Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Environ Microbiome ; 19(1): 17, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491515

ABSTRACT

BACKGROUND: The complex and co-evolved interplay between plants and their microbiota is crucial for the health and fitness of the plant holobiont. However, the microbiota of the seeds is still relatively unexplored and no studies have been conducted with olive trees so far. In this study, we aimed to characterize the bacterial, fungal and archaeal communities present in seeds of ten olive genotypes growing in the same orchard through amplicon sequencing to test whether the olive genotype is a major driver in shaping the seed microbial community, and to identify the origin of the latter. Therefore, we have developed a methodology for obtaining samples from the olive seed's endosphere under sterile conditions. RESULTS: A diverse microbiota was uncovered in olive seeds, the plant genotype being an important factor influencing the structure and composition of the microbial communities. The most abundant bacterial phylum was Actinobacteria, accounting for an average relative abundance of 41%. At genus level, Streptomyces stood out because of its potential influence on community structure. Within the fungal community, Basidiomycota and Ascomycota were the most abundant phyla, including the genera Malassezia, Cladosporium, and Mycosphaerella. The shared microbiome was composed of four bacterial (Stenotrophomonas, Streptomyces, Promicromonospora and Acidipropionibacterium) and three fungal (Malassezia, Cladosporium and Mycosphaerella) genera. Furthermore, a comparison between findings obtained here and earlier results from the root endosphere of the same trees indicated that genera such as Streptomyces and Malassezia were present in both olive compartments. CONCLUSIONS: This study provides the first insights into the composition of the olive seed microbiota. The highly abundant fungal genus Malassezia and the bacterial genus Streptomyces reflect a unique signature of the olive seed microbiota. The genotype clearly shaped the composition of the seed's microbial community, although a shared microbiome was found. We identified genera that may translocate from the roots to the seeds, as they were present in both organs of the same trees. These findings set the stage for future research into potential vertical transmission of olive endophytes and the role of specific microbial taxa in seed germination, development, and seedling survival.

2.
Environ Sci Ecotechnol ; 20: 100407, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38544950

ABSTRACT

Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.

3.
Nat Commun ; 15(1): 23, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167850

ABSTRACT

In terrestrial ecosystems, plant leaves provide the largest biological habitat for highly diverse microbial communities, known as the phyllosphere microbiota. However, the underlying mechanisms of host-driven assembly of these ubiquitous communities remain largely elusive. Here, we conduct a large-scale and in-depth assessment of the rice phyllosphere microbiome aimed at identifying specific host-microbe links. A genome-wide association study reveals a strong association between the plant genotype and members of four bacterial orders, Pseudomonadales, Burkholderiales, Enterobacterales and Xanthomonadales. Some of the associations are specific to a distinct host genomic locus, pathway or even gene. The compound 4-hydroxycinnamic acid (4-HCA) is identified as the main driver for enrichment of bacteria belonging to Pseudomonadales. 4-HCA can be synthesized by the host plant's OsPAL02 from the phenylpropanoid biosynthesis pathway. A knockout mutant of OsPAL02 results in reduced Pseudomonadales abundance, dysbiosis of the phyllosphere microbiota and consequently higher susceptibility of rice plants to disease. Our study provides a direct link between a specific plant metabolite and rice phyllosphere homeostasis opening possibilities for new breeding strategies.


Subject(s)
Microbiota , Oryza , Oryza/genetics , Oryza/microbiology , Lignin , Genome-Wide Association Study , Plant Breeding , Plant Leaves/microbiology , Homeostasis , Bacteria/genetics , Plants/genetics
4.
Environ Res ; 248: 118342, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295980

ABSTRACT

Biodegradable mulch films (BDMs) are increasingly used in agricultural production as desirable alternatives to the current widespread use of polyethylene (PE) mulch films in China. However, potential effects of different colors of BDMs on field crop production and microbiomes remain unexplored. Here, the differences in bacterial communities of peanut rhizosphere soil (RS) and bulk soil (BS) under non-mulching (CK), PE, and three different colors of BDMs were studied. The results indicated that all treatments could increase the soil temperature, which positively affected the growth of the peanut plants. Moreover, mulching affected the bacterial community structure in RS and BS compared to CK. Furthermore, certain BDM treatments significantly enriched N-fixing bacteria (Bradyrhizobium and Mesorhizobium) and functional groups, increased the closeness of bacterial networks, and harbored more beneficial bacteria as keystone taxa in the RS. This in turn facilitated the growth and development of the peanut plants under field conditions. Our study provides new insights into the micro-ecological effects of mulch films, which can be affected by both the mulch type and color. The observed effects are likely caused by temperature and prevalence of specific microbial functions under the employed films and could guide the development of optimized mulching materials.


Subject(s)
Arachis , Soil , Soil/chemistry , Agriculture/methods , Bacteria , Polyethylene
5.
FEMS Microbiol Ecol ; 100(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38271603

ABSTRACT

Rhizosphere microbiome assembly is essential for plant health, but the temporal dimension of this process remains unexplored. We used a chronosequence of 150 years of the retreating Hallstätter glacier (Dachstein, Austria) to disentangle this exemplarily for the rhizosphere of three pioneer alpine plants. Time of deglaciation was an important factor shaping the rhizosphere microbiome. Microbiome functions, i.e. nutrient uptake and stress protection, were carried out by ubiquitous and cosmopolitan bacteria. The rhizosphere succession along the chronosequence was characterized by decreasing microbial richness but increasing specificity of the plant-associated bacterial community. Environmental selection is a critical factor in shaping the ecosystem, particularly in terms of plant-driven recruitment from the available edaphic pool. A higher rhizosphere microbial richness during early succession compared to late succession can be explained by the occurrence of cold-acclimated bacteria recruited from the surrounding soils. These taxa might be sensitive to changing habitat conditions that occurred at the later stages. A stronger influence of the plant host on the rhizosphere microbiome assembly was observed with increased time since deglaciation. Overall, this study indicated that well-adapted, ubiquitous microbes potentially support pioneer plants to colonize new ecosystems, while plant-specific microbes may be associated with the long-term establishment of their hosts.


Subject(s)
Microbiota , Rhizosphere , Ice Cover/microbiology , Austria , Soil Microbiology , Bacteria/genetics , Soil , Plants
6.
Environ Microbiome ; 18(1): 78, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37876011

ABSTRACT

BACKGROUND: Leaf-associated microbes play an important role in plant development and response to exogenous stress. Insect herbivores are known to alter the phyllosphere microbiome. However, whether the host plant's defense against insects is related to the phyllosphere microbiome remains mostly elusive. Here, we investigated bacterial communities in the phyllosphere and endosphere of eight wheat cultivars with differing aphid resistance, grown in the same farmland. RESULTS: The bacterial community in both the phyllosphere and endosphere showed significant differences among most wheat cultivars. The phyllosphere was connected to more complex and stable microbial networks than the endosphere in most wheat cultivars. Moreover, the genera Pantoea, Massilia, and Pseudomonas were found to play a major role in shaping the microbial community in the wheat phyllosphere. Additionally, wheat plants showed phenotype-specific associations with the genera Massilia and Pseudomonas. The abundance of the genus Exiguobacterium in the phyllosphere exhibited a significant negative correlation with the aphid hazard grade in the wheat plants. CONCLUSION: Communities of leaf-associated microbes in wheat plants were mainly driven by the host genotype. Members of the genus Exiguobacterium may have adverse effects on wheat aphids. Our findings provide new clues supporting the development of aphid control strategies based on phyllosphere microbiome engineering.

7.
Gut Microbes ; 15(2): 2258565, 2023 12.
Article in English | MEDLINE | ID: mdl-37741805

ABSTRACT

Diversity of the gut microbiota is crucial for human health. However, whether fruit and vegetable associated bacteria contribute to overall gut bacterial diversity is still unknown. We reconstructed metagenome-assembled genomes from 156 fruit and vegetable metagenomes to investigate the prevalence of associated bacteria in 2,426 publicly available gut metagenomes. The microbiomes of fresh fruits and vegetables and the human gut are represented by members in common such as Enterobacterales, Burkholderiales, and Lactobacillales. Exposure to bacteria via fruit and vegetable consumption potentially has a beneficial impact on the functional diversity of gut microbiota particularly due to the presence of putative health-promoting genes for the production of vitamin and short-chain fatty acids. In the human gut, they were consistently present, although at a low abundance, approx. 2.2%. Host age, vegetable consumption frequency, and the diversity of plants consumed were drivers favoring a higher proportion. Overall, these results provide one of the primary links between the human microbiome and the environmental microbiome. This study revealed evidence that fruit and vegetable-derived microbes could be found in the human gut and contribute to gut microbiome diversity.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Vegetables , Plants, Edible , Fruit , Gastrointestinal Microbiome/genetics , Bacteria/genetics
8.
Front Plant Sci ; 14: 1234843, 2023.
Article in English | MEDLINE | ID: mdl-37426976
9.
J Hazard Mater ; 458: 132035, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37453358

ABSTRACT

The plant microbiota can substantially contribute to various functions related to host health, fitness, and productivity. Therefore, maintaining the integrity of the microbiota is beginning to be seen as a crucial factor in modern agriculture. Here, we evaluated the effects of two chemical pesticides (azoxystrobin and carbendazim) and an antibiotic-based biopesticide (wuyiencin) on the rhizosphere microbiome of tomato plants. It was found that all treatments resulted in changes in the bacterial community structure to varying degrees. The most pronounced changes were observed with the biopesticide, which resulted in an enrichment of Streptomyces in the microbiome. In contrast, the relative abundance of Actinobacteria decreased in samples that were treated with low and high dosages of carbendazim. Clostridia were enriched after the applications of azoxystrobin and wuyiencin. When functioning of the microbiome was assessed, it was shown that genes encoding multidrug efflux pumps and ABC transporters related to nutrient uptake were enriched. This enrichment is likely to overcome potentially negative effects linked to the exposure to the employed substances. The study provides new insights into the potential of different pesticides to modulate native plant microbiomes, and thus highlights the importance to include such evaluations when new active agents are developed.


Subject(s)
Biological Control Agents , Pesticides , Soil Microbiology , Rhizosphere , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Plant Roots/microbiology
10.
Sci Total Environ ; 892: 164532, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37270019

ABSTRACT

Microbial bioremediation is a highly effective method to degrade phthalates in the environment. However, the response of native microbial communities to the exogenously introduced microorganism remains unknown. In this study, the native fungal community was monitored by amplicon sequencing of the fungal ITS region during the restoration process of the di-n-butyl phthalate (DBP)-contaminated soils with Gordonia phthalatica QH-11T. Our results showed that the diversity, composition, and structure of the fungal community in the bioremediation treatment did not differ from the control, and no significant correlations were found between number of Gordonia and variation of fungal community. It was also observed that DBP pollution initially increased the relative abundance of plant pathogens and soil saprotrophs first, but their proportions returned to the initial level. Molecular ecological network analysis showed that DBP pollution increased the network complexity, while the network was not significantly altered by bioremediation. Overall, the introduction of Gordonia was shown to not have a long-term impact on the native soil fungal community. Therefore, this restoration method can be considered safe in terms of soil ecosystem stability. The present study provides a deeper insight into the effect of bioremediation on fungal communities and provides an extended basis to further explore the ecological risks of introducing exogenous microorganisms.


Subject(s)
Gordonia Bacterium , Mycobiome , Soil Pollutants , Dibutyl Phthalate/metabolism , Biodegradation, Environmental , Ecosystem , Soil/chemistry , Gordonia Bacterium/metabolism , Soil Pollutants/metabolism , Soil Microbiology
11.
Environ Microbiome ; 18(1): 46, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37264474

ABSTRACT

BACKGROUND: The microbiota of liverworts provides an interesting model for plant symbioses; however, their microbiome assembly is not yet understood. Here, we assessed specific factors that shape microbial communities associated with Riccia temporary agricultural crusts in harvested fields by investigating bacterial, fungal and archaeal communities in thalli and adhering soil from different field sites in Styria and Burgenland, Austria combining qPCR analyses, amplicon sequencing and advanced microscopy. RESULTS: Riccia spec. div. was colonized by a very high abundance of bacteria (1010 16S rRNA gene copies per g of thallus) as well as archaea and fungi (108 ITS copies per g of thallus). Each Riccia thallus contain approx. 1000 prokaryotic and fungal ASVs. The field type was the main driver for the enrichment of fungal taxa, likely due to an imprint on soil microbiomes by the cultivated crop plants. This was shown by a higher fungal richness and different fungal community compositions comparing liverwort samples collected from pumpkin fields, with those from corn fields. In contrast, bacterial communities linked to liverworts are highly specialized and the soil attached to them is not a significant source of these bacteria. Specifically, enriched Cyanobacteria, Bacteroidetes and Methylobacteria suggest a symbiotic interaction. Intriguingly, compared to the surrounding soil, the thallus samples were shown to enrich several well-known bacterial and fungal phytopathogens indicating an undescribed role of liverworts as potential reservoirs of crop pathogens. CONCLUSIONS: Our results provide evidence that a stable bacterial community but varying fungal communities are colonizing liverwort thalli. Post-harvest, temporary agricultural biocrusts are important reservoirs for microbial biodiversity but they have to be considered as potential reservoirs for pathogens as well.

12.
Microbiol Mol Biol Rev ; 87(3): e0021222, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37367231

ABSTRACT

Microbiomes have highly important roles for ecosystem functioning and carry out key functions that support planetary health, including nutrient cycling, climate regulation, and water filtration. Microbiomes are also intimately associated with complex multicellular organisms such as humans, other animals, plants, and insects and perform crucial roles for the health of their hosts. Although we are starting to understand that microbiomes in different systems are interconnected, there is still a poor understanding of microbiome transfer and connectivity. In this review we show how microbiomes are connected within and transferred between different habitats and discuss the functional consequences of these connections. Microbiome transfer occurs between and within abiotic (e.g., air, soil, and water) and biotic environments, and can either be mediated through different vectors (e.g., insects or food) or direct interactions. Such transfer processes may also include the transmission of pathogens or antibiotic resistance genes. However, here, we highlight the fact that microbiome transmission can have positive effects on planetary and human health, where transmitted microorganisms potentially providing novel functions may be important for the adaptation of ecosystems.


Subject(s)
Microbiota , Planets , Animals , Humans , Soil Microbiology , Microbiota/physiology , Soil , Water
13.
Curr Opin Microbiol ; 75: 102349, 2023 10.
Article in English | MEDLINE | ID: mdl-37369150

ABSTRACT

Crop production and the food security that it provides are currently threatened worldwide by plant pathogens. Conventional control measures, such as breeding for resistant plants, are progressively losing their efficacy due to rapidly evolving pathogens. The plant microbiota contributes to essential functions of host plants, among which is protection against pathogens. Only recently, microorganisms that provide holistic protection against certain plant diseases were identified. They were termed as 'soterobionts' and extend their host's immune system, which results in disease-resistant phenotypes. Further exploration of such microorganisms could not only provide answers to better understand the implications of the plant microbiota in health and disease, but also contribute to new developments in agriculture and beyond. The aim of this work is to point out how the identification of plant-associated soterobionts can be facilitated, and to discuss technologies that will be required to enable this.


Subject(s)
Microbiota , Plants , Agriculture/methods , Crop Production , Plant Diseases/prevention & control
14.
Heliyon ; 9(4): e14708, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37151658

ABSTRACT

The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.

15.
J Hazard Mater ; 455: 131608, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37178534

ABSTRACT

Pyroxasulfone (PYR) is a widely used herbicide, but its effects on non-target organisms, particularly microorganisms, are largely unknown. Herein, we investigated the effects of various doses of PYR on the sugarcane rhizosphere microbiome by using amplicon sequencing of rRNA genes and quantitative PCR techniques. Correlation analyses indicated that several bacterial phyla (Verrucomicrobia and Rhodothermaeota) and genera (Streptomyces and Ignavibacteria) strongly responded to PYR application. Additionally, we found that both bacterial diversity and composition were significantly altered after 30 days, indicating a prolonged effect of the herbicide. Moreover, co-occurrence analyses of the bacterial community showed that the network complexity was significantly decreased by PYR at day 45. Furthermore, FAPROTAX analysis suggested that some functions with implications for carbon cycling groups were significantly altered after 30 days. Overall, we provide the first indications that PYR may not pose a significant risk for altering microbial communities in the short term (less than 30 days). However, its potential negative effects on bacterial communities in the middle and late stages of degradation deserve further attention. To our knowledge, this is the first study to provide insight into the effects of PYR on the rhizosphere microbiome, providing an extended basis for future risk assessments.


Subject(s)
Herbicides , Microbiota , Saccharum , Streptomyces , Rhizosphere , Soil Microbiology , Microbiota/genetics , Soil
16.
Environ Microbiome ; 18(1): 28, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37004087

ABSTRACT

The plant microbiota fulfils various crucial functions related to host health, fitness, and productivity. Over the past years, the number of plant microbiome studies continued to steadily increase. Technological advancements not only allow us to produce constantly increasing datasets, but also to extract more information from them in order to advance our understanding of plant-microbe interactions. The growing knowledge base has an enormous potential to improve microbiome-based, sustainable agricultural practices, which are currently poorly understood and have yet to be further developed. Cereal plants are staple foods for a large proportion of the world's population and are therefore often implemented in microbiome studies. In the present review, we conducted extensive literature research to reflect the current state of knowledge in terms of the microbiome of the four most commonly cultivated cereal plants. We found that currently the majority of available studies are targeting the wheat microbiome, which is closely followed by studies on maize and rice. There is a substantial gap, in terms of published studies, addressing the barley microbiome. Overall, the focus of most microbiome studies on cereal plants is on the below-ground microbial communities, and there is more research on bacteria than on fungi and archaea. A meta-analysis conducted in the frame of this review highlights microbiome similarities across different cereal plants. Our review also provides an outlook on how the plant microbiota could be harnessed to improve sustainability of cereal crop production.

17.
Front Plant Sci ; 14: 1135105, 2023.
Article in English | MEDLINE | ID: mdl-36866381

ABSTRACT

Introduction: Tobacco brown spot disease caused by Alternaria fungal species is a major threat to tobacco growth and yield. Thus, accurate and rapid detection of tobacco brown spot disease is vital for disease prevention and chemical pesticide inputs. Methods: Here, we propose an improved YOLOX-Tiny network, named YOLO-Tobacco, for the detection of tobacco brown spot disease under open-field scenarios. Aiming to excavate valuable disease features and enhance the integration of different levels of features, thereby improving the ability to detect dense disease spots at different scales, we introduced hierarchical mixed-scale units (HMUs) in the neck network for information interaction and feature refinement between channels. Furthermore, in order to enhance the detection of small disease spots and the robustness of the network, we also introduced convolutional block attention modules (CBAMs) into the neck network. Results: As a result, the YOLO-Tobacco network achieved an average precision (AP) of 80.56% on the test set. The AP was 3.22%, 8.99%, and 12.03% higher than that obtained by the classic lightweight detection networks YOLOX-Tiny network, YOLOv5-S network, and YOLOv4-Tiny network, respectively. In addition, the YOLO-Tobacco network also had a fast detection speed of 69 frames per second (FPS). Discussion: Therefore, the YOLO-Tobacco network satisfies both the advantages of high detection accuracy and fast detection speed. It will likely have a positive impact on early monitoring, disease control, and quality assessment in diseased tobacco plants.

18.
Phytopathology ; 113(8): 1369-1379, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36858028

ABSTRACT

Despite the numerous benefits plants receive from probiotics, maintaining consistent results across applications is still a challenge. Cultivation-independent methods associated with reduced sequencing costs have considerably improved the overall understanding of microbial ecology in the plant environment. As a result, now, it is possible to engineer a consortium of microbes aiming for improved plant health. Such synthetic microbial communities (SynComs) contain carefully chosen microbial species to produce the desired microbiome function. Microbial biofilm formation, production of secondary metabolites, and ability to induce plant resistance are some of the microbial traits to consider when designing SynComs. Plant-associated microbial communities are not assembled randomly. Ecological theories suggest that these communities have a defined phylogenetic organization structured by general community assembly rules. Using machine learning, we can study these rules and target microbial functions that generate desired plant phenotypes. Well-structured assemblages are more likely to lead to a stable SynCom that thrives under environmental stressors as compared with the classical selection of single microbial activities or taxonomy. However, ensuring microbial colonization and long-term plant phenotype stability is still one of the challenges to overcome with SynComs, as the synthetic community may change over time with microbial horizontal gene transfer and retained mutations. Here, we explored the advances made in SynCom research regarding plant health, focusing on bacteria, as they are the most dominant microbial form compared with other members of the microbiome and the most commonly found in SynCom studies.

19.
Microbiol Spectr ; : e0529822, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975996

ABSTRACT

Insects are associated with diverse microbial communities that can have substantial effects on hosts. Here, we characterized the bacterial communities in the Asian citrus psyllid (ACP), Diaphorina citri (Hemiptera: Psyllidae), a major vector of the devastating pathogen "Candidatus Liberibacter asiaticus," which causes citrus Huanglongbing (HLB). In total, 256 ACP individuals across 15 field sites and one laboratory population in China were sequenced. The results showed that the bacterial community diversity was the highest in the Guilin population (average Shannon index, 1.27), and the highest value for richness was found in the Chenzhou population (average Chao1 index, 298). The bacterial community structures of the field-collected populations were significantly different, and all of them harbored Wolbachia, which was assigned to strain ST-173. Structural equation models revealed that the dominant Wolbachia strain had a significantly negative correlation with the annual mean temperature. In addition, the results obtained with populations infected with "Ca. Liberibacter asiaticus" indicated that in total, 140 bacteria could be involved in interactions with this bacterium. The ACP field populations harbored a more diverse bacterial community than the laboratory population, and the relative occurrences of some symbionts differed significantly. However, the bacterial community of the ACP laboratory colony was connected in a more complex network structure (average degree, 54.83) than that of the field populations (average degree, 10.62). Our results provide evidence that environmental factors can influence the bacterial community structure and bacterial relative abundance in ACP populations. This is likely due to the adaptation of ACPs to local environments. IMPORTANCE The Asian citrus psyllid (ACP) is an important vector of the HLB pathogen, which is a major threat to citrus production around the world. Bacterial communities harbored by insects could be affected by different environmental factors. Understanding these factors that affect the bacterial community of the ACP could be important for the better management of HLB transmission. This work surveyed ACP field populations in mainland China in order to explore the bacterial community diversity of different populations and the potential relationships between environmental factors and predominant symbionts. We have assessed the differences in ACP bacterial communities and identified the prevalent Wolbachia strains in the field. In addition, we compared the bacterial communities of ACP field-collected and laboratory populations. Comparing populations subjected to contrasting conditions could help us to better understand how the ACP adapts to local environmental conditions. Our study provides new insights into how environmental factors influence the bacterial community of the ACP.

20.
Microb Cell Fact ; 22(1): 50, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36915090

ABSTRACT

BACKGROUND: The lipopeptide herbicolin A (HA) secreted by the biocontrol agent Pantoea agglomerans ZJU23 is a promising antifungal drug to combat fungal pathogens by targeting lipid rafts, both in agricultural and clinical settings. Improvement of HA production would be of great significance in promoting its commercialization. This study aims to enhance the HA production in ZJU23 by combining fermentation optimization and strain engineering. RESULTS: Based on the results in the single-factor experiments, corn steep liquor, temperature and initial pH were identified as the significant affecting factors by the Plackett-Burman design. The fermentation medium and conditions were further optimized using the Box-Behnken response surface method, and the HA production of the wild type strain ZJU23 was improved from ~ 87 mg/mL in King's B medium to ~ 211 mg/mL in HA induction (HAI) medium. A transposon library was constructed in ZJU23 to screen for mutants with higher HA production, and two transcriptional repressors for HA biosynthesis, LrhA and PurR, were identified. Disruption of the LrhA gene led to increased mRNA expression of HA biosynthetic genes, and subsequently improved about twofold HA production. Finally, the HA production reached ~ 471 mg/mL in the ΔLrhA mutant under optimized fermentation conditions, which is about 5.4 times higher than before (~ 87 mg/mL). The bacterial suspension of the ΔLrhA mutant fermented in HAI medium significantly enhanced its biocontrol efficacy against gray mold disease and Fusarium crown rot of wheat, showing equivalent control efficacies as the chemical fungicides used in this study. Furthermore, HA was effective against fungicide resistant Botrytis cinerea. Increased HA production substantially improved the control efficacy against gray mold disease caused by a pyrimethanil resistant strain. CONCLUSIONS: This study reveals that the transcriptional repressor LrhA negatively regulates HA biosynthesis and the defined HAI medium is suitable for HA production. These findings provide an extended basis for large-scale production of HA and promote biofungicide development based on ZJU23 and HA in the future.


Subject(s)
Antifungal Agents , Biological Control Agents , Bioreactors , Fermentation , Genetic Engineering , Pantoea , Pantoea/classification , Pantoea/drug effects , Pantoea/genetics , Pantoea/metabolism , Fermentation/drug effects , Fermentation/genetics , Genetic Engineering/methods , Antifungal Agents/metabolism , Biological Control Agents/metabolism , Temperature , Hydrogen-Ion Concentration , Gene Expression Regulation, Bacterial , Culture Media/chemistry , Culture Media/pharmacology , Regression Analysis , Analysis of Variance , Reproducibility of Results , Repressor Proteins/antagonists & inhibitors , Mycoses/prevention & control , Mycoses/therapy , Crops, Agricultural/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Plant Diseases/therapy , Humans , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...